Skip to Main Content

The Levy Library Blog

Article in the Spotlight: February 2021

by Angelyn Thornton on 2021-02-24T09:50:00-05:00 | 0 Comments

Article in the Spotlight

 

Each month Levy Library showcases the achievements of Mount Sinai faculty and researchers by highlighting an article and its altmetrics. Altmetrics are alternative measures of impact that capture non-traditional data like abstract views, article downloads, and social media activity. Our altmetrics data is provided by the  PlumX platform

This month we highlight Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. This article was written in part by Florian Krammer, PhD and Viviana A Simon MD, PhD.

 

 

INTRODUCTION

Immunological memory is the basis for durable protective immunity after infections or vaccinations. Duration of immunological memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 is unclear. Immunological memory can consist of memory B cells, antibodies, memory CD4+ T cells, and/or memory CD8+ T cells. Knowledge of the kinetics and interrelationships among those four types of memory in humans is limited. Understanding immune memory to SARS-CoV-2 has implications for understanding protective immunity against COVID-19 and assessing the likely future course of the COVID-19 pandemic.

RATIONALE

Assessing virus-specific immune memory over at least a 6-month period is likely necessary to ascertain the durability of immune memory to SARS-CoV-2. Given the evidence that antibodies, CD4+ T cells, and CD8+ T cells can all participate in protective immunity to SARS-CoV-2, we measured antigen-specific antibodies, memory B cells, CD4+ T cells, and CD8+ T cells in the blood from subjects who recovered from COVID-19, up to 8 months after infection.

RESULTS

The study involved 254 samples from 188 COVID-19 cases, including 43 samples at 6 to 8 months after infection. Fifty-one subjects in the study provided longitudinal blood samples, allowing for both cross-sectional and longitudinal analyses of SARS-CoV-2–specific immune memory. Antibodies against SARS-CoV-2 spike and receptor binding domain (RBD) declined moderately over 8 months, comparable to several other reports. Memory B cells against SARS-CoV-2 spike actually increased between 1 month and 8 months after infection. Memory CD8+T cells and memory CD4+ T cells declined with an initial half-life of 3 to 5 months. This is the largest antigen-specific study to date of the four major types of immune memory for any viral infection.

Among the antibody responses, spike immunoglobulin G (IgG), RBD IgG, and neutralizing antibody titers exhibited similar kinetics. Spike IgA was still present in the large majority of subjects at 6 to 8 months after infection. Among the memory B cell responses, IgG was the dominant isotype, with a minor population of IgA memory B cells. IgM memory B cells appeared to be short-lived. CD8+ T cell and CD4+ T cell memory was measured for all SARS-CoV-2 proteins. Although ~70% of individuals possessed detectable CD8+ T cell memory at 1 month after infection, that proportion declined to ~50% by 6 to 8 months after infection. For CD4+ T cell memory, 93% of subjects had detectable SARS-CoV-2 memory at 1 month after infection, and the proportion of subjects positive for CD4+ T cells (92%) remained high at 6 to 8 months after infection. SARS-CoV-2 spike-specific memory CD4+ T cells with the specialized capacity to help B cells [T follicular helper (TFH) cells] were also maintained.

The different types of immune memory each had distinct kinetics, resulting in complex interrelationships between the abundance of T cell, B cell, and antibody immune memory over time. Additionally, substantially heterogeneity in memory to SARS-CoV-2 was observed.

CONCLUSION

Substantial immune memory is generated after COVID-19, involving all four major types of immune memory. About 95% of subjects retained immune memory at ~6 months after infection. Circulating antibody titers were not predictive of T cell memory. Thus, simple serological tests for SARS-CoV-2 antibodies do not reflect the richness and durability of immune memory to SARS-CoV-2. This work expands our understanding of immune memory in humans. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19.

 

Immunological memory consists of antibodies, memory B cells, memory CD8+ T cells, and memory CD4+ T cells.

 

View this article's profile on Plum


 Add a Comment

0 Comments.

  Subscribe



Enter your e-mail address to receive notifications of new posts by e-mail.


  Archive



  Follow Us



  Facebook
  Twitter
  Instagram
  Return to Blog
This post is closed for further discussion.

title
Loading...